Ai Course
This course investigates and implements of k-nearest neighbors, naive Bayes, regression trees, and others, you’ll explore a variety of machine learning algorithms and practice selecting the best model, considering key principles of how to
Lecture 1_ Overview _ Stanford CS221_ AI (Autumn 2019)
Lecture 2_ Machine Learning 1 - Linear Classifiers, SGD _ Stanford CS221_ AI (Autumn 2019)
Lecture 5 Search 1 Dynamic Programming Uniform Cost Search Stanford CS221 AI Autumn 2019
Lecture 6_ Search 2 - A_ _ Stanford CS221_ AI (Autumn 2019)
Lecture 7 Markov Decision Processes Value Iteration Stanford CS221 AI Autumn 2019
Lecture 8_ Markov Decision Processes - Reinforcement Learning _ Stanford CS221_ AI (Autumn 2019)
Lecture 9_ Game Playing 1 - Minimax, Alpha-beta Pruning _ Stanford CS221_ AI (Autumn 2019)
Lecture 10 Game Playing 2 TD Learning Game Theory Stanford CS221 AI Autumn 2019
Lecture 11_ Factor Graphs 1 - Constraint Satisfaction Problems _ Stanford CS221_ AI (Autumn 2019)
Lecture 12_ Factor Graphs 2 - Conditional Independence _ Stanford CS221_ AI (Autumn 2019)
Lecture 13_ Bayesian Networks 1 - Inference _ Stanford CS221_ AI (Autumn 2019)
Lecture 14_ Bayesian Networks 2 - Forward-Backward _ Stanford CS221_ AI (Autumn 2019)
Lecture 15 Bayesian Networks 3 Maximum Likelihood Stanford CS221 AI Autumn 2019
Lecture 16 Logic 1 Propositional Logic Stanford CS221 AI Autumn 2019
Lecture 17_ Logic 2 - First-order Logic _ Stanford CS221_ AI (Autumn 2019)
Lecture 18_ Deep Learning _ Stanford CS221_ AI (Autumn 2019)
Lecture 19_ Conclusion _ Stanford CS221_ AI (Autumn 2019)
AI Pdf